Anne wrote and asked whether it is possible to over-alkalize the body. Yes, Anne, it is possible. This link takes you to a very comprehensive study of the ways we can be either excessively acidic or alkaline.
The author, Michael J Bookallil of the Royal Prince Alfred Hospital, Sydney, NSW, talks about respiratory alkalosis, caused by hyperventilation, and alkalosis from metabolic causes. Here's an excerpt complete with links.
" 6.3.4 METABOLIC ALKALOSIS (non-respiratory alkalosis). This is due to loss of HCl from the ECF or addition of alkali. Metabolic alkalosis is compensated by respiratory depression which causes CO2 retention (Tuller and Mehdi, 1971; Shear et al, 1973; Aquino et al, 1973) but may also cause hypoxia. The pH is usually raised but may be high normal if there is much CO2 retention. Metabolic alkalosis is due to:
6.3.4.1. Loss of gastric juice containing HCl. Patients with pyloric obstruction lose some K+ and Na+ as well as HCl. The loss of K+ is mainly through the kidney (Kassirer et al, 1966). At first the urine is alkaline but after stable conditions are established the urine becomes acidic as the normal inorganic acid load from protein breakdown still has to be excreted (Schwartz et al, 1978). If it were not, it would correct the alkalosis. The acid urine used to be thought to be paradoxical (Van Slyke and Evans, 1947), and was attributed to K+ deficiency.
The situation of a chronic metabolic alkalosis with acid urine is probably the best clinical example where balance or status as destinct from input, output or turnover (section 2.1) should be distinguished. The blood pH status is stable and alkaline. For the non-respiratory pH to remain high the normal acid output must continue, i.e. acid excretion in the urine will be normal and the urine pH will be low.
6.3.4.2 Diuretic alkalosis. Thiazide diuretics, frusemide and ethacrynic acid can produce a metabolic alkalosis. HCl, its equivalent NH4Cl or HCl having acted on phosphate buffer is lost in the urine. The central role of Cl in the production of diuretic alkalosis has been established (Kassirer et al, 1965).
6.3.4.3 Ingestion or injection of excess base, e.g. Na+HCO3- or Na+OH-. Post transfusional or post-cardiac surgery metabolic alkalosis is usually due to the administration and metabolism of sodium citrate (Kappogoda et al, 1973; Barcenas et al, 1976). If NaHCO2 is given to "correct" an acidosis it may result in a high serum Na and osmolality and later an alkalosis.
6.3.4.4 Steroid alkalosis (Kassirer et al, 1970; Schambelan et al, 1971)."Anne, I hope you can derive enough from this explanation. In a layman's nutshell, you will quickly pee out excess alkalis.
No comments:
Post a Comment